Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(51): 26008-26019, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31796582

RESUMO

The transient receptor potential ankyrin 1 (TRPA1) channel functions as an irritant sensor and is a therapeutic target for treating pain, itch, and respiratory diseases. As a ligand-gated channel, TRPA1 can be activated by electrophilic compounds such as allyl isothiocyanate (AITC) through covalent modification or activated by noncovalent agonists through ligand binding. However, how covalent modification leads to channel opening and, importantly, how noncovalent binding activates TRPA1 are not well-understood. Here we report a class of piperidine carboxamides (PIPCs) as potent, noncovalent agonists of human TRPA1. Based on their species-specific effects on human and rat channels, we identified residues critical for channel activation; we then generated binding modes for TRPA1-PIPC interactions using structural modeling, molecular docking, and mutational analysis. We show that PIPCs bind to a hydrophobic site located at the interface of the pore helix 1 (PH1) and S5 and S6 transmembrane segments. Interestingly, this binding site overlaps with that of known allosteric modulators, such as A-967079 and propofol. Similar binding sites, involving π-helix rearrangements on S6, have been recently reported for other TRP channels, suggesting an evolutionarily conserved mechanism. Finally, we show that for PIPC analogs, predictions from computational modeling are consistent with experimental structure-activity studies, thereby suggesting strategies for rational drug design.


Assuntos
Simulação de Acoplamento Molecular , Piperidinas/farmacologia , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/efeitos dos fármacos , Animais , Sítios de Ligação , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Desenho de Fármacos , Humanos , Isotiocianatos , Ligantes , Modelos Estruturais , Mutagênese , Oximas/farmacologia , Propofol/farmacologia , Domínios Proteicos , Ratos , Especificidade da Espécie , Canal de Cátion TRPA1/metabolismo
2.
J Med Chem ; 61(8): 3641-3659, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29590749

RESUMO

Transient receptor potential ankyrin 1 (TRPA1) is a non-selective cation channel expressed in sensory neurons where it functions as an irritant sensor for a plethora of electrophilic compounds and is implicated in pain, itch, and respiratory disease. To study its function in various disease contexts, we sought to identify novel, potent, and selective small-molecule TRPA1 antagonists. Herein we describe the evolution of an N-isopropylglycine sulfonamide lead (1) to a novel and potent (4 R,5 S)-4-fluoro-5-methylproline sulfonamide series of inhibitors. Molecular modeling was utilized to derive low-energy three-dimensional conformations to guide ligand design. This effort led to compound 20, which possessed a balanced combination of potency and metabolic stability but poor solubility that ultimately limited in vivo exposure. To improve solubility and in vivo exposure, we developed methylene phosphate prodrug 22, which demonstrated superior oral exposure and robust in vivo target engagement in a rat model of AITC-induced pain.


Assuntos
Pró-Fármacos/farmacologia , Prolina/análogos & derivados , Prolina/farmacologia , Sulfonamidas/farmacologia , Canal de Cátion TRPA1/antagonistas & inibidores , Animais , Cães , Descoberta de Drogas , Estabilidade de Medicamentos , Humanos , Ligantes , Células Madin Darby de Rim Canino , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Conformação Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Prolina/síntese química , Prolina/farmacocinética , Ratos , Solubilidade , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/farmacocinética , Canal de Cátion TRPA1/química
3.
J Biotechnol ; 233: 171-80, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27416794

RESUMO

In recent years, optogenetic approaches have significantly advanced the experimental repertoire of cellular and functional neuroscience. Yet, precise and reliable methods for specific expression of optogenetic tools remain challenging. In this work, we studied the transduction efficiency of seven different adeno-associated virus (AAV) serotypes in primary cortical neurons and revealed recombinant (r) AAV6 to be the most efficient for constructs under control of the cytomegalovirus (CMV) promoter. To further specify expression of the transgene, we exchanged the CMV promoter for the human synapsin (hSyn) promoter. In primary cortical-glial mixed cultures transduced with hSyn promoter-containing rAAVs, expression of ChR2opt (a Channelrhodopsin-2 variant) was limited to neurons. In these neurons action potentials could be reliably elicited upon laser stimulation (473nm). The use of rAAV serotype alone to restrict expression to neurons results in a lower transduction efficiency than the use of a broader transducing serotype with specificity conferred via a restrictive promoter. Cells transduced with the hSyn driven gene expression were able to elicit action potentials with more spatially and temporally accurate illumination than neurons electrofected with the CMV driven construct. The hSyn promoter is particularly suited to use in AAVs due to its small size. These results demonstrate that rAAVs are versatile tools to mediate specific and efficient transduction as well as functional and stable expression of transgenes in primary cortical neurons.


Assuntos
Dependovirus/genética , Neurônios/citologia , Optogenética/métodos , Rodopsina/genética , Transdução Genética/métodos , Animais , Células Cultivadas , Humanos , Regiões Promotoras Genéticas/genética , Ratos , Ratos Wistar , Rodopsina/análise , Rodopsina/metabolismo , Sinapsinas/genética
4.
Mol Pharmacol ; 75(2): 272-80, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19015229

RESUMO

The discovery of retigabine has provided access to alternative anticonvulsant compounds with a novel mode of action. Acting as potassium channel opener, retigabine exclusively activates neuronal KCNQ-type K(+) channels, mainly by shifting the voltage-dependence of channel activation to hyperpolarizing potentials. So far, only parts of the retigabine-binding site have been described, including Trp-265 and Gly-340 (according to KCNQ3 numbering) within transmembrane segments S5 and S6, respectively. Using a refined chimeric strategy, we additionally identified a Leu-314 within the pore region of KCNQ3 as crucial for the retigabine effect. Both Trp-265 and Leu-314 are likely to interact with the retigabine molecule, representing the upper and lower margins of the putative binding site. Guided by a structural model of KCNQ3, which was constructed based on the Kv1.2 crystal structure, further residues affecting retigabine-binding could be proposed and were experimentally verified as mediators for the action of the compound. These results strongly suggest that, besides Trp-265 and Leu-314, it is highly likely that another S5 residue, Leu-272, which is conserved in all KCNQ subunits, contributes to the binding site in KCNQ3. More importantly, Leu-338, extending from S6 of the neighboring subunit is also apparently involved in lining the hydrophobic binding pocket for the drug. This pocket, which is formed at the interface of two adjacent subunits, may be present only in the open state of the channel, consistent with the idea that retigabine stabilizes an open-channel conformation.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Anticonvulsivantes/farmacologia , Carbamatos/farmacologia , Canal de Potássio KCNQ3/metabolismo , Fenilenodiaminas/farmacologia , Animais , Sítios de Ligação , Canal de Potássio KCNQ3/química , Canal de Potássio KCNQ3/efeitos dos fármacos , Leucina/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Modelos Moleculares , Triptofano/metabolismo , Xenopus laevis
5.
Biochem Biophys Res Commun ; 371(4): 741-6, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18457656

RESUMO

Ion channels encoded by KCNQ genes (1-5) are key regulators of membrane properties in many cell types. The KCNQ5 gene was the last to be identified and has three splice variants that are expressed in human brain and skeletal muscle. The KCNQ5 encoded channel possesses M-current properties and so far no channelopathy has been associated with any of the three variants. We now show that only the shortest KCNQ5 variant, which has exon 9 deleted, was expressed in a variety of murine vascular smooth muscle. In Xenopus oocytes, this variant generated currents with amplitudes, activation kinetics and biophysical properties similar to the full-length variant normally expressed in neuronal tissue. Furthermore sensitivity to block by XE991 and activation by retigabine were also similar between both variants. These data represent an exhaustive characterisation of a truncated KCNQ5 splice variant that may contribute to the native XE991-sensitive channel in murine vasculature.


Assuntos
Processamento Alternativo , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Animais , Antracenos/farmacologia , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Éxons , Canais de Potássio KCNQ/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C , Músculo Liso/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...